Another point of consideration may be based on the methods of OCT scan reporting, where a clinician might decide whether if OCT reports via paper print-outs or direct computer monitor analysis is more effective. In a practice where IMAGEnet is available, Topcon 3D OCT 1000 might be a good choice due to the seamless integration of the two software and the more complete set of information obtainable with computer analysis of scans. Also, the types of qualitative analysis software (such as the " slab="" view'="" option="" on="" the="" cirrus="" hd-oct="" or="" macular="" 3d="" reconstruction="" a="" number="" of="" spectral-domain="" oct="" devices)="" quantitative="" analysis="" software="" (like="" volumetric="" available="" rtvue="" 100)="" may="" be="" considered="" based="" individual="" needs="" and="" preferences.="" lastly,="" quality="" segmentation="" an="" important="" consideration="" in="" busy="" practices="" where="" manual="" correction="" lines="" due="" to="" line="" breakdown="" might="" not="" feasible.="" having="" high="" is="" since="" it="" needed="" obtain="" accurate="" thickness="" measurements.="">
Commercial OCT device companies all utilize different segmentation software, and so the rate of segmentation line breakdown also varies across devices; this is especially true in pathological states. Clinicians need to be aware of the differences but also understand that companies regularly update their segmentation software to improve the accuracy of retinal thickness measurements.
Dr. Reichel is director of the Vitreoretinal Service and vice chair,
1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178-81.
2. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325-32.
3. Schuman, JS, Hee, MR, Arya, AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995; 6(2):89-95.
4. Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994;11:1584-9.
5. Wojtkowski, M, Srinivasan, V, Fujimoto, JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005; 112:1734-46.
6. Srinivasan, VJ, Adler, DC, Chen, Y, et Al. Ultrahigh-Speed Optical Co-herence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head. Invest Ophthalmol Vis Sci 2008; 49: 5103-10.
7. Ho, J, Sull, AC, Voung, LN, et al. Assessment of Artifacts and Reproducibility in Pathological Eyes across Spectral and Time Domain Optical Coherence Tomography Devices. Manuscript in submission.
8. Leung, CK, Cheung, CY, Weinreb RN, et al. Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2008; 49(11): 4893-7.
9. Forooghian, F, Cukras, C, Meyerle, CB, et al. Evaluation of Time Domain and Spectral Domain Optical Coherence Tomography in the Measurement of Diabetic Macular Edema. Invest Ophthalmol Vis Sci. 2008; 49: 4290-96.